If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-750=0
a = 2; b = 16; c = -750;
Δ = b2-4ac
Δ = 162-4·2·(-750)
Δ = 6256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6256}=\sqrt{16*391}=\sqrt{16}*\sqrt{391}=4\sqrt{391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{391}}{2*2}=\frac{-16-4\sqrt{391}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{391}}{2*2}=\frac{-16+4\sqrt{391}}{4} $
| x÷2+x÷5=5 | | 5x^2-7x+2=9 | | 4/3x+5/8=7/4 | | -4(x+5)+6=1(x-7) | | 2,196=36(p+30) | | -4248=12n | | 6x+5x=74 | | 2x^2+6x+740=0 | | -3(-2x+4)-5x=3x+2 | | 2x^2+6x+660=0 | | 156+w=-13.5 | | 8j+5=61 | | x-13.8=15.3 | | 4x+20x-24=0 | | x+100+3x=108 | | 3x-39=2x-13 | | 15p•4=45 | | –8u−6=–10u | | 2x^2+8x+950=0 | | 2(4x+7.5)=4x+8x+3 | | -18-6k=6(6+3k) | | -3.5=8-a | | 4x+13=4x+12 | | 12.65+y=19.22 | | 2(2x+4)=3x+2+2x-4 | | 2x−3=11 | | 7−5x−(3+5x)=0 | | 2(2x+0.75)=x+16+2x-5.5 | | 5.5-0.5=0.25b | | 6x+19-3x-1=24 | | 4(4-d)-31=16d-5(3+4d) | | x+0.5x-1+x-2=110 |